Página Inicial » Espaço Sideral


 

|02|

10 tipos surpreendentes de estrela

Algumas são velozes, algumas são simplesmente gigantes e outras desafiam quase todas as leis da física: conheça a seguir 10 tipos impressionantes de estrelas.

10 – Hipergigantes

Estrelas desse tipo fazem o sol parecer uma bolinha de gude. A maior que conhecemos (NML Cygni) tem um raio 1.650 vezes maior que o dele – ou de 7,67 Unidades Astronômicas (1 UA = 149 597 871 km). Para se ter uma ideia, Júpiter orbita a 5,23 UA do sol. Por causa de seu tamanho absurdo, as estrelas hipergigantes vivem “apenas” cerca de 24 milhões de anos ou menos.

A hipergigante Betelgeuse, que fica na constelação de Órion, deve se tornar uma supernova dentro dos próximos 200 mil anos e, quando isso acontecer, ficará mais brilhante que a lua durante um ano.

9 – Hipervelozes

Ao se deslocar para perto do centro de uma galáxia, algumas estrelas são ejetadas a altíssimas velocidades (2 ou 3 milhões de quilômetros por hora), percorrendo distâncias inimagináveis até o final de suas vidas.

8 – Cefeidas

Essas estrelas normalmente têm massa 5 a 20 vezes maior que a do sol e, curiosamente, crescem e diminuem em intervalos regulares (como se estivessem pulsando). Por causa da forte pressão exercida por seus núcleos, elas aumentam de tamanho; quando a pressão começa a diminuir, elas se “contraem”. O ciclo continua até a estrela morrer.

7 – Anãs negras

Se uma estrela for pequena demais para explodir como uma supernova ou se tornar uma estrela de nêutrons, ela se transforma em uma “anã branca” – uma estrela extremamente densa e quase sem brilho, que já gastou seu combustível e que não tem mais fissão nuclear ocorrendo em seu núcleo.

Com o passar do tempo, as anãs brancas começam a se resfriar e, em algum momento, devem param de emitir luz ou calor – e se tornam “anãs negras”. Contudo, como esse processo é muito demorado, acredita-se que não existam (ainda) anãs negras no universo – o sol levaria 14,5 bilhões de anos para se tornar uma.

6 – Estrelas em concha

Devido à força centrífuga gerada por sua rotação, as estrelas são levemente “achatadas”. Dependendo da sua proporção, uma estrela pode gerar uma força centrífuga tão intensa que acaba assumindo uma forma oval, parecida com a de uma bola de futebol americano. Ao redor do seu “equador”, elas emitem grandes volumes de matéria, formando uma espécie de “concha de gás”. Na foto acima, a nuvem branca em torno da estrela Alfa Eridan é a “concha”.

5 – Estrelas de nêutrons

Mais densas que o núcleo de um átomo e com poucas dezenas de quilômetros de diâmetro, as estrelas de nêutrons são resultado de uma supernova (estrela 10 ou mais vezes maior que o sol e que entrou em colapso e explodiu). Qualquer átomo que se aproxime delas é imediatamente “despedaçado” e suas partículas são reorganizadas sob a forma de nêutrons – processo que libera uma quantidade considerável de energia.

Se um asteroide de tamanho médio colidir com uma estrela de nêutrons, o choque vai emitir uma onda de raios gama com muito mais energia do que a que o sol produzirá durante toda a sua vida. Assim, mesmo a centenas de anos-luz, uma estrela de nêutrons representaria uma ameaça considerável à vida na Terra.

4 – Estrelas de energia negra

Hipoteticamente, quando uma estrela grande entra em colapso, ela não se transforma em um buraco negro, mas o tempo-espaço se transforma em energia negra – essa estranha teoria, veja só, é uma alternativa à dos buracos negros, que é mais “popular” – mas nem por isso isenta de falhas.

Graças a princípios da mecânica quântica, a estrela de energia negra teria uma propriedade especial: fora de seu horizonte de evento (ligação entre tempo-espaço além da qual um evento não pode afetar um observador externo), ela atrairia matéria; dentro, ela repeliria toda a matéria, pois a energia negra tem uma espécie de “gravidade negativa”.

Ainda de acordo com essa mesma teoria, se um elétron ultrapassar o horizonte de evento de uma estrela de energia negra, ele será convertido em um pósitron (“anti-elétron”) e ejetado. Se essa partícula colidir com um elétron, as duas serão aniquiladas e irão liberar energia. Acredita-se que esse fenômeno ocorre em larga escala no centro de galáxias, o que explicaria por que tanta radiação é emitida dessas regiões.

3 – Estrelas de ferro

No interior de estrelas, ocorre um processo de fusão nuclear, em que elementos leves se fundem e formam elementos mais pesados, e assim sucessivamente, liberando energia a cada etapa. O caminho normalmente é o seguinte: hélio para carbono, carbono para oxigênio, oxigênio para neon, neon para silício e, finalmente, silício para ferro – gerar ferro demanda mais energia do que é liberada, por isso é a etapa final. Contudo, a maioria das estrelas morre antes de começar a fundir carbono ou, quando chegam a esse ponto, acabam virando supernovas pouco depois.

Uma estrela de ferro, como o próprio nome sugere, seria composta puramente por ferro, mas paradoxalmente ainda continuaria liberando energia, graças ao “efeito túnel” da mecânica quântica, em que uma partícula atravessa barreiras que normalmente seria incapaz de atravessar – é como se você atirasse uma bolinha contra uma parede e, ao invés de quicar, ela passasse através dela. O ferro tem uma espécie de barreira, e é por isso que fundi-lo demanda tanta energia. Com o efeito túnel, porém, seria possível realizar essa fusão praticamente sem gastar energia.

Como tanto o efeito túnel quanto o ferro são relativamente raros, estima-se que levará 10¹⁵⁰³ anos até que uma estrela de ferro apareça.

2 – Quase-estrela

Quando uma estrela hipergigante entra em colapso, ela normalmente se transforma em um buraco negro com uma massa dez vezes maior do que a do sol. Até aí, sem problemas. Contudo, como explicar os buracos negros encontrados nos centros das galáxias, bilhões de vezes mais massivos? A ideia de que um buraco negro “pequeno” pode absorver matéria e crescer procede, mas não se aplica, pois o processo levaria muito tempo – e, acredita-se, os buracos negros gigantes se formaram durante os primeiros bilhões de anos do universo.

Uma teoria sugere que, durante essa fase, havia estrelas ainda maiores do que as hipergigantes, compostas basicamente por hélio e hidrogênio, que entraram em colapso e formaram buracos negros gigantescos (que teriam se fundido e dado origem aos dos centros de galáxias).

Outra teoria aposta nas “quase-estrelas”, resultado do colapso de nuvens de hélio e hidrogênio que existiam no começo do universo. Se a nuvem de matéria que deu origem a esses corpos (que teriam um brilho de bilhões de sóis) fosse densa o bastante, seria capaz de suportar a explosão das quase-estrelas, que absorveriam essa imensa quantidade de matéria e dariam origem aos buracos negros extremamente massivos.

1 – Estrelas de bósons

Existem, basicamente, dois tipos de partículas no universo: os bósons (que carregam forças, como fótons e glúons) e férmions (elementais e compostas, como elétrons, nêutrons e quarks). Em uma analogia bastante simples, férmions são como construções, incapazes de ocupar um mesmo ponto no espaço, e bósons são como fantasmas, capazes de ocupar um mesmo ponto no espaço (embora tenham massa, ao contrário de supostos espíritos).

Todas as estrelas que conhecemos são compostas de férmions, mas teoricamente seria possível que existissem estrelas de bósons. Como essas partículas podem ocupar um único ponto, bilhões delas poderiam se unir e, mesmo que cada uma tenha uma massa desprezível, o conjunto teria uma massa considerável e, principalmente, concentrada – gerando um fortíssimo campo gravitacional. Acredita-se que, se esse tipo de estrela existe, será encontrado no centro de galáxias.[Listverse]

 

 


Conheça os Cursos On-Line
Portal do Conhecimento